BIBLIOGRAPHIE

- 1. Wollenweber, E. (1976) Z. Pflanzenphysiol. 78, 344.
- 2. Wollenweber, E. et Dietz, V. H. (1980) Biochem. Syst. Ecol. 8, 21.
- 3. Mabry, T. J., Markham, K. et Thomas, M. B. (1970) The Systematic Identification of Flavonoids. Springer, New York.
- 4. Dietz, V. H., Wollenweber, E., Favre-Bonvin, J. et Gomez, L. D. (1980) Z. Naturforsch. Teil C 35, 36.
- Wagner, H., Seligmann, O., Chari, M. V., Wollenweber, E., Dietz, V. H., Donelly, D. M. X., Meegan, M. J. et O'Donnell, B. (1979) Tetrahedron Letters 4269
- 6. Wollenweber, E. (1978) Am. Fern. J. 68, 13.
- 7. Wollenweber, E., Favre-Bonvin, J. et Jay, M. (1978) Z. Naturforsch. Teil C 33, 831.
- 8. Jay, M., Wollenweber, E. et Favre-Bonvin, J. (1979) *Phytochemistry* 18, 153.

Phytochemistry, 1980, Vol. 19, pp. 2045-2046. © Pergamon Press Ltd. Printed in England.

0031-9422/80/0901-2045 \$02.00/0

2045

THREE GUAIANOLIDES FROM HYPOCHOERIS RADICATA*

FERDINAND BOHLMANN and ROLF BOHLMANN

Institute for Organic Chemistry, Technical University Berlin, Strasse des 17. Juni 135, D-1000 Berlin 12, W. Germany

(Received 11 December 1979)

Key Word Index—Hypochoeris radicata; Compositae; new guaianolides; sesquiterpene lactones.

So far little is known about the chemistry of the genus *Hypochoeris* (tribe Cichorieae). Flavonoids are known from three species [1], while in one species several guaianolides and an eudesmanolide are present [2]. We have now re-investigated *Hypochoeris radicata* L.; so far only the presence of the flavones luteolin and isoetin has been reported [1].

The roots of H. radicata L. afforded a mixture of triterpene acetates, only the lupcol derivative 1 being identified. The more polar fractions contain a complex mixture of sesquiterpene lactones, which could only be partly separated. Intensive ¹H NMR studies led to the structures 2, 4 and 5. The presence of a cinnamic ester in 2 and a methacrylate in 4 and 5 easily could be deduced from the NMR data (see Table 1). Irradiation of the doublet at δ 6.42 sharpens the broadened doublets of 14-H and in the ¹H NMR spectrum of the corresponding acetate 3 the 3-H signal is shifted to higher fields. On irradiation at 4.42 the doublet of doublets at 3.34 collapses to a doublet and the four-fold doublet at 3.21 to a broadened doublet. Irradiation of the latter collapses the 13-H doublets to singlets and the three-fold doublet at 5.32 to a doublet of doublets, clearly indicating that the signal at 3.21 must be assigned to 7-H and consequently the signals for 5-H, 6-H and 8-H can be assigned too. The observed couplings of 8-H and those of 6-H indicate the stereochemistry at C-5 to C-8. The configuration at C-10 only can be assigned

indirectly. In the NMR spectrum of 2 the signal of 1-H could be assigned. Inspection of models shows that the observed couplings are in better agreement with a β orientation of the 10-methyl group, since the cisannelation of the rings clearly follows from the coupling $J_{1.5}$. The ¹H NMR spectrum of 4 (see Table 1) clearly shows that only the ester group is changed, as all signals are nearly identical with those of 2. Though 5 could not be separated from 4, the NMR data indicate that it is the 11,13-dihydro derivative of 4. The stereochemistry at C-11, however, could not be assigned as the signal of 11-H is overlapped by other multiplets. We have named the desacyl derivative of 2 and 4 hyporadiolide. The aerial parts contain, in addition to 1, 2, 4 and 5, the ester 6. This investigation shows that guaianolides may be characteristic for the genus Hypochoeris.

EXPERIMENTAL

The fresh plant material (grown from seeds Botanical Garden Köln, voucher 79/1387) was cut and extracted with Et_2O -petrol (1:2). The resulting extracts were first separated by CC (Si gel, act. grade II) and further by repeated TLC (Si gel, GF 254). Roots (220 g) afforded 30 mg 1, 15 mg 2 (Et_2O), 7 mg 4 (Et_2O) and 7 mg 5 (Et_2O) and aerial parts (2.15 kg) 30 mg 1, 10 mg 2, 5 mg 4, 5 mg 5 and 20 mg 6.

^{*}Part 280 in the series "Naturally Occurring Terpene Derivatives". For Part 279 see: Bohlmann, F., Rosenberg, E., Robinson, H. and King, R. M. (1980) *Phytochemistry* 19, 2047

Table 1. ¹H NMR data of 2-5 (270 MHz, CDCl₃, TMS as internal standard)

	2	3	4	5
1-H	2.85 m	2.86 dd	2.83 m	2.83 m
3-H	6.42 t	6.23 t	6.42 t	6.42 t
5-H	3.34 dd(br)	3.34 dd(br)	3.32 dd(br)	3.32 dd(br)
6- H	4.42 dd	4.43 dd	4.40 dd	4.46 dd
7-H	3.21 dddd	3.21 dddd	3.22 dddd	2.60 m
8-H	5.32 ddd	5.32 ddd	5.25 ddd	5.25 ddd
10-H	2.68 m	2.65 m	2.67 m	2.67 m
13 -H	6.34 d	6.34 d	6.33 d	1.33 d
13'-H	5.89 d	5.87 d	5.82 d	
14-H	4.62 d(br)	5.03 d(br)	4.62 d(br)	4.62 d(br)
14'-H	4.80 d(br)	5.22 d(br)	4.80 d(br)	4.80 d(br)
15-H	1.02 <i>d</i>	1.03 d	1.00 d	0.92 d
OCOR	6.47 d		6.17 s(br)	6.14 s(br)
	7.76 d		5.71 s(br)	5.67 s(br)
	7.43 m (3H) 7.56 m (2H)		1.99s(br)	1.97 s(br)
OAc		2.06 s		

J (Hz): 1,5 = 6; 1,10 = 9; 3,14 = 1.5; 5,6 = 6,7 = 7,8 = 8,9 = 10; 7,13 = 3.5; 7,13' = 3; 10,15 = 7; 14,14' = 18; 5; 11,13 = 7; O-Cinn 2',3' = 16.

(PhCH=CHCO₂H + 1,100). 5 mg 2 were heated for 1 hr in 0.1 ml Ac₂O. TLC afforded 5 mg 3, colourless gum; 1 H NMR, see Table 1.

Hyporadiolide-8-O-[2-methylacrylate] (4). Colourless gum, IR (CCl₄) cm⁻¹: 3620 (OH), 1780 (lactone), 1715, 1645 (C=CCO₂R, C=CCO); MS (CI, isobutane): 347 (M⁺ + 1, 95 ° $_{9}$) (C₁₉H₂₂O₆); 261 (M - RCO₂H, 100).

11,13-Dihydrohyporadiolide-8-O-[2-methylacrylate] (5). Colourless gum, not free from 4, IR (CCl₄) cm⁻¹: 3620 (OH), 1780 (lactone), 1715, 1645 (C=CCO₂R, C=CCO); MS (CI,

isobutane): 349 $(M^+ + 1, 100\%)$; $(C_{19}H_{24}O_6)$; 263 $(M - RCO_2H, 85)$.

Acknowledgement—We thank the Deutsche Forschungsgemeinschaft for financial support.

REFERENCES

- 1. Harborne, J. B. (1978) Phytochemistry 17, 915.
- Gonzalez, A. G., Bermejo, J., Massanet, G. M., Amaso, J. M. and Dominguez, B. (1976) Phytochemistry 15, 991.